王崎要跟冯落衣说的,☦🁬🈺自然就是内模型🈓♞🉤计划了。
内模型和可构造类,差不多就是🕘花与果的关系了。可构造类是花,内模型是果。👐
但是,内模型毕竟是有致命缺陷的。
首先,它是完全建立在良基集合🕘之上的。而算学也确实是存在只有非良基集合才能驾驭的部分🈜⚳🕚。
而且,它也排除了循环,不包含无穷降链。
另外,它也不能容纳包括🏸第一、第二不可达基数在内的大基数。
大基数好处有很多。之前也说过,引入大基数可以直接证明任何可构造的实数集合🅳不会引发分球悖论,并且不需要取消选择函数;引☲🃙入大基数可以证明二🆏🎧📛阶算术的完备性,等等。
而筑基🔗学派的理论体系想要发展,也必须要有🂈大基数才行🗱🟙。
但内模型也并非一无是处。
连续统问题,其实可以算是一个三阶问题了。而大基数,恰好不能🍁🅈🄧解决三🕀🆥阶问题。
内模型发可以完美解决。
所以,为了⛂🗣大基数🌻🄔☹,而抛弃内模型🔪🃟🙇,也是捡了芝麻丢了西瓜的蠢事。
所以,王崎就提出了一个想法。
一个很自然的,“合在一起做撒🕘尿牛丸”的想法。
从内模型开始,使用力迫法,不断添加元素,一步🎬步将数学模型本🍁🅈🄧身扩张,直到它能够容纳大基数为止。
力迫法本身就是通过不断添加元素,使得两个不同集合的联系暴露,最终达到一种“让理论👟🍦自己证明自己”的效果的。